Archive for the ‘Chatbot News’ Category

Bos presents an extensive survey of computational semantics, a research area focused on computationally understanding human language in written or spoken form. He discusses how to represent semantics in order to capture the meaning of human language, how to construct these representations from natural language expressions, and how to draw inferences from the semantic representations. The author also discusses the generation of background knowledge, which can support reasoning tasks. Bos indicates machine learning, knowledge resources, and scaling inference as topics that can have a big impact on computational semantics in the future. This paper reports a systematic mapping study conducted to get a general overview of how text semantics is being treated in text mining studies. It fills a literature review gap in this broad research field through a well-defined review process.

The process of augmenting the document vector spaces for an LSI index with new documents in this manner is called folding in. When the terms and concepts of a new set of documents need to be included in an LSI index, either the term-document matrix, and the SVD, must be recomputed or an incremental update method (such as the one described in ) is needed. LSI is based on the principle that words that are used in the same contexts tend to have similar meanings. A key feature of LSI is its ability to extract the conceptual content of a body of text by establishing associations between those terms that occur in similar contexts. MonkeyLearn makes it simple for you to get started with automated semantic analysis tools. Using a low-code UI, you can create models to automatically analyze your text for semantics and perform techniques like sentiment and topic analysis, or keyword extraction, in just a few simple steps.

Latent semantic analysis

Wikipedia concepts, as well as their links and categories, are also useful for enriching text text semantic analysis [74–77] or classifying documents [78–80]. Medelyan et al. present the value of Wikipedia and discuss how the community of researchers are making use of it in natural language processing tasks , information retrieval, information extraction, and ontology building. Methods that deal with latent semantics are reviewed in the study of Daud et al. . The authors present a chronological analysis from 1999 to 2009 of directed probabilistic topic models, such as probabilistic latent semantic analysis, latent Dirichlet allocation, and their extensions. When the field of interest is broad and the objective is to have an overview of what is being developed in the research field, it is recommended to apply a particular type of systematic review named systematic mapping study . Systematic mapping studies follow an well-defined protocol as in any systematic review.

What are the techniques used for semantic analysis?

Semantic text classification models2. Semantic text extraction models

Machine Learning algorithms are programmed to discover patterns in data. Machine learning algorithms can be trained to analyze any new text with a high degree of accuracy. This makes it possible to measure the sentiment on processor speed even when people use slightly different words.

Semantic Classification Models

Sentiment analysis builds on thematic analysis to help you understand the emotion behind a theme. Sentiment analysis scores each piece of text or theme and assigns positive, neutral or negative sentiment. Thematic analysis can then be applied to discover themes in your unstructured data. This helps you easily identify what your customers are talking about, for example, in their reviews or survey feedback. SaaS products like Thematic allow you to get started with sentiment analysis straight away. You can instantly benefit from sentiment analysis models pre-trained on customer feedback.

https://metadialog.com/

Social media monitoring, reputation management, and customer experience are just a few areas that can benefit from sentiment analysis. For example, analyzing thousands of product reviews can generate useful feedback on your pricing or product features. The first part of semantic analysis, studying the meaning of individual words is called lexical semantics. It includes words, sub-words, affixes (sub-units), compound words and phrases also. In other words, we can say that lexical semantics is the relationship between lexical items, meaning of sentences and syntax of sentence. More recently, deep learning techniques, such as RoBERTa and T5, are used to train high-performing sentiment classifiers that are evaluated using metrics like F1, recall, and precision.

What is Semantic Analysis

However, there is a lack of studies that integrate the different branches of research performed to incorporate text semantics in the text mining process. Secondary studies, such as surveys and reviews, can integrate and organize the studies that were already developed and guide future works. We hope this guide has given you a good overview of sentiment analysis and how you can use it in your business. Sentiment analysis can be applied to everything from brand monitoring to market research and HR. It’s helping companies to glean deeper insights, become more competitive, and better understand their customers.

documents

A comparison among semantic aspects of different languages and their impact on the results of text mining techniques would also be interesting. For example, in news articles – mostly due to the expected journalistic objectivity – journalists often describe actions or events rather than directly stating the polarity of a piece of information. Sentiment analysis is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information.

Text Analysis with Machine Learning

For example, ‘Raspberry Pi’ can refer to a fruit, a single-board computer, or even a company (UK-based foundation). Hence, it is critical to identify which meaning suits the word depending on its usage. The approach helps deliver optimized and suitable content to the users, thereby boosting traffic and improving result relevance.

What are the three types of semantic analysis?

  • Hyponyms: This refers to a specific lexical entity having a relationship with a more generic verbal entity called hypernym.
  • Meronomy: Refers to the arrangement of words and text that denote a minor component of something.
  • Polysemy: It refers to a word having more than one meaning.

Insights derived from data also help teams detect areas of improvement and make better decisions. For example, you might decide to create a strong knowledge base by identifying the most common customer inquiries. Smart search‘ is another functionality that one can integrate with ecommerce search tools. The tool analyzes every user interaction with the ecommerce site to determine their intentions and thereby offers results inclined to those intentions. Search autocomplete‘ functionality is one such type that predicts what a user intends to search based on previously searched queries.

This is increasingly important in medicine and healthcare, where nlp semantics helps analyze notes and text in electronic health records that would otherwise be inaccessible for study when seeking to improve care. The goal is a computer capable of “understanding” the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

  • For example, we see that both mathematicians and physicists can run, so maybe we give these words a high score for the “is able to run” semantic attribute.
  • The final subsection is dedicated to the relatively recent literature on distributional semantics approaches to “composing meaning,” ranging from the studies that solely rely on lexical information to works that make use of grammar theory.
  • Understanding what people are saying can be difficult even for us homo sapiens.
  • It represents the relationship between a generic term and instances of that generic term.
  • Leveraging semantic search is definitely worth considering for all of your NLP projects.
  • Therefore, this information needs to be extracted and mapped to a structure that Siri can process.

They learn to perform tasks based on training data they are fed, and adjust their methods as more data is processed. Using a combination of machine learning, deep learning and neural networks, natural language processing algorithms hone their own rules through repeated processing and learning. Earlier approaches to natural language processing involved a more rules-based approach, where simpler machine learning algorithms were told what words and phrases to look for in text and given specific responses when those phrases appeared.

How NLP & NLU Work For Semantic Search

If p is a logical form, then the expression \x.p defines a function with bound variablex.Beta-reductionis the formal notion of applying a function to an argument. For instance,(\x.p)aapplies the function\x.p to the argumenta, leavingp. Systems based on automatically learning the rules can be made more accurate simply by supplying more input data. However, systems based on handwritten rules can only be made more accurate by increasing the complexity of the rules, which is a much more difficult task. In particular, there is a limit to the complexity of systems based on handwritten rules, beyond which the systems become more and more unmanageable.

  • This problem can also be transformed into a classification problem and a machine learning model can be trained for every relationship type.
  • The idea is to group nouns with words that are in relation to them.
  • This implies that whenever Uber releases an update or introduces new features via a new app version, the mobility service provider keeps track of social networks to understand user reviews and feelings on the latest app release.
  • Relation Extraction is a key component for building relation knowledge graphs, and also of crucial significance to natural language processing applications such as structured search, sentiment analysis, question answering, and summarization.
  • For example, if we talk about the same word “Bank”, we can write the meaning ‘a financial institution’ or ‘a river bank’.
  • Natural language processing is an area of computer science and artificial intelligence concerned with the interaction between computers and humans in natural language.

A major drawback of statistical methods is that they require elaborate feature engineering. Since 2015, the field has thus largely abandoned statistical methods and shifted to neural networks for machine learning. In some areas, this shift has entailed substantial changes in how NLP systems are designed, such that deep neural network-based approaches may be viewed as a new paradigm distinct from statistical natural language processing.

Meaning Representation

In the ever-expanding era of textual information, it is important for organizations to draw insights from such data to fuel businesses. Semantic Analysis helps machines interpret the meaning of texts and extract useful information, thus providing invaluable data while reducing manual efforts. Semantic Analysis is a topic of NLP which is explained on the GeeksforGeeks blog. The entities involved in this text, along with their relationships, are shown below. Hence, under Compositional Semantics Analysis, we try to understand how combinations of individual words form the meaning of the text. Moreover, with the ability to capture the context of user searches, the engine can provide accurate and relevant results.

relations

Understanding what people are saying can be difficult even for us homo sapiens. Clearly, making sense of human language is a legitimately hard problem for computers. It is the first part of semantic analysis, in which we study the meaning of individual words.

Part 9: Step by Step Guide to Master NLP – Semantic Analysis

Conversely, a search engine could have 100% recall by only returning documents that it knows to be a perfect fit, but sit will likely miss some good results. These kinds of processing can include tasks like normalization, spelling correction, or stemming, each of which we’ll look at in more detail. Affixing a numeral to the items in these predicates designates that in the semantic representation of an idea, we are talking about a particular instance, or interpretation, of an action or object. For instance, loves1 denotes a particular interpretation of “love.”

What is NLP syntax?

Syntactic analysis or parsing or syntax analysis is the third phase of NLP. The purpose of this phase is to draw exact meaning, or you can say dictionary meaning from the text. Syntax analysis checks the text for meaningfulness comparing to the rules of formal grammar.

The purpose of semantic analysis is to draw exact meaning, or you can say dictionary meaning from the text. The work of semantic analyzer is to check the text for meaningfulness. For Example, Tagging Twitter mentions by sentiment to get a sense of how customers feel about your product and can identify unhappy customers in real-time.

Unsupervised Training with Query Generation (GenQ)

Through his research work, he has represented India at top Universities like Massachusetts Institute of Technology , University of California , National University of Singapore , Cambridge University . In addition to this, he is currently serving as an ‘IEEE Reviewer’ for the IEEE Internet of Things Journal.

Although both these sentences 1 and 2 use the same set of root words , they convey entirely different meanings. Search autocomplete‘ functionality is one such type that predicts what a user intends to search based on previously searched queries. It saves a lot of time for the users as they can simply click on one of the search queries provided by the engine and get the desired result. With sentiment analysis, companies can gauge user intent, evaluate their experience, and accordingly plan on how to address their problems and execute advertising or marketing campaigns. In short, sentiment analysis can streamline and boost successful business strategies for enterprises.

Multilingual Sentence Transformers

Learn about digital transformation tools that could help secure … Designed specifically for telecom companies, the tool comes with prepackaged data sets and capabilities to enable quick … Automation of routine litigation tasks — one example is the artificially intelligent attorney. This is when common words are removed from text so unique words that offer the most information about the text remain. Upgrade your search or recommendation systems with just a few lines of code, or contact us for help.

Deci Launches New Version of its Deep Learning Platform … – AiThority

Deci Launches New Version of its Deep Learning Platform ….

Posted: Fri, 24 Feb 2023 12:21:00 GMT [source]

However, the extraction and generation of research data from the original document are extremely challenging mainly due to the narrative nature of the pathology report. As such, the data management of pathology reports tends to be excessively time consuming and requires tremendous effort and cost owing to its presentation as a narrative document. While causal language transformers are trained to predict a word from its previous context, masked language transformers predict randomly masked words from a surrounding context.

https://metadialog.com/

Machine learning algorithms usually process this task. There are several classifiers available, but the simplest is the k-nearest neighbor algorithm . The possibility of translating text and speech to different languages has always been one of the main interests in the NLP field.

Comparison of natural language processing algorithms for medical texts

& Zuidema, W. H. Experiential, distributional and dependency-based word embeddings have complementary roles in decoding brain activity. In Proceedings of the 8th Workshop on Cognitive Modeling and Computational Linguistics , . The resulting volumetric data lying along a 3 mm line orthogonal to the mid-thickness surface were linearly projected to the corresponding vertices. The resulting surface projections were spatially decimated by 10, and are hereafter referred to as voxels, for simplicity. Finally, each group of five sentences was separately and linearly detrended. It is noteworthy that our cross-validation never splits such groups of five consecutive sentences between the train and test sets.

statistical

It is one of the most popular tasks in NLP, and it is often used by organizations to automatically assess customer sentiment on social media. Analyzing these social media interactions enables brands to detect urgent customer issues that they need to respond to, or just monitor general customer satisfaction. Several conventional keyword extraction algorithms were carried out based on the feature of a text such as term frequency-inverse document frequency, word offset1,2. This approach is straightforward but not suitable for analysing the complex structure of a text and achieving high extraction performance. Permutation feature importance shows that several factors such as the amount of training and the architecture significantly impact brain scores.

Lexical semantics (of individual words in context)

Each natural language processing algorithm report was split into paragraphs for each specimen because reports often contained multiple specimens. After the division, all upper cases were converted to lowercase, and special characters were removed. However, numbers in the report were not removed for consistency with the keywords of the report. Then, each word was tokenized using WordPiece embeddings8. Finally, 6771 statements from 3115 pathology reports were used to develop the algorithm. There have been many studies for word embeddings to deal with natural language in terms of numeric computation.

NLP is a massive leap into understanding human language and applying pulled-out knowledge to make calculated business decisions. Both NLP and OCR improve operational efficiency when dealing with text bodies, so we also recommend checking out the complete OCR overview and automating OCR annotations for additional insights. Natural language processing and powerful machine learning algorithms are improving, and bringing order to the chaos of human language, right down to concepts like sarcasm.

Why SQL is the base knowledge for data science

Giannaris et al. recently developed an artificial intelligence-driven structurization tool for pathology reports27. Our work aimed at extracting pathological keywords; it could retrieve more condensed attributes than general named entity recognition on reports. Table 2 shows the keyword extraction performance of the seven competitive methods and BERT. Compared with the other methods, BERT achieved the highest precision, recall, and exact matching on all keyword types.

customer support

We highlighted such concepts as simple similarity metrics, text normalization, vectorization, word embeddings, popular algorithms for NLP . All these things are essential for NLP and you should be aware of them if you start to learn the field or need to have a general idea about the NLP. Vectorization is a procedure for converting words into digits to extract text attributes and further use of machine learning algorithms. Though natural language processing tasks are closely intertwined, they can be subdivided into categories for convenience. Since the neural turn, statistical methods in NLP research have been largely replaced by neural networks.

Automating processes in customer service

The learning procedures used during machine learning automatically focus on the most common cases, whereas when writing rules by hand it is often not at all obvious where the effort should be directed. The unified platform is built for all data types, all users, and all environments to deliver critical business insights for every organization. DataRobot is trusted by global customers across industries and verticals, including a third of the Fortune 50.

  • Below, you can see that most of the responses referred to “Product Features,” followed by “Product UX” and “Customer Support” .
  • Computers only understand numbers so you need to decide on a vector representation.
  •  AI Data Management and Curation Manage, version, and debug your data and create more accurate datasets faster.
  • Another possible task is recognizing and classifying the speech acts in a chunk of text (e.g. yes-no question, content question, statement, assertion, etc.).
  • Our work adopted a deep learning approach more advanced than a rule-based mechanism and dealt with a larger variety of pathologic terms compared with restricted extraction.
  • Using NLP techniques like sentiment analysis, you can keep an eye on what’s going on inside your customer base.

Two reviewers examined publications indexed by Scopus, IEEE, MEDLINE, EMBASE, the ACM Digital Library, and the ACL Anthology. Publications reporting on NLP for mapping clinical text from EHRs to ontology concepts were included. The studies’ objectives were categorized by way of induction. This involves assigning tags to texts to put them in categories. This can be useful for sentiment analysis, which helps the natural language processing algorithm determine the sentiment, or emotion behind a text.

A pre-trained BERT for Korean medical natural language processing

They employed a dual network before the output layer, but the network is significantly shallow to deal with language representation. Zhang et al. developed a target-centered LSTM model30. This model classifies whether a single word is a keyword. It is prone to errors of extracting not exactly matched keyword rather than our model that extracts keywords in one step. These deep learning models used a unidirectional structure and a single process to train. In contrast, our model adopted bidirectional representations and pre-training/fine-tuning approaches.

  • In the second phase, both reviewers excluded publications where the developed NLP algorithm was not evaluated by assessing the titles, abstracts, and, in case of uncertainty, the Method section of the publication.
  • Also, some of the technologies out there only make you think they understand the meaning of a text.
  • Additionally, we evaluated the performance of keyword extraction for the three types of pathological domains according to the training epochs.
  • A list of sixteen recommendations regarding the usage of NLP systems and algorithms, usage of data, evaluation and validation, presentation of results, and generalizability of results was developed.
  • Similarly, a number followed by a proper noun followed by the word “street” is probably a street address.
  • Essentially, the job is to break a text into smaller bits while tossing away certain characters, such as punctuation.

We’ll see that for a short example it’s fairly easy to ensure this alignment as a human. Still, eventually, we’ll have to consider the hashing part of the algorithm to be thorough enough to implement — I’ll cover this after going over the more intuitive part. Solve customer problems the first time, across any channel. Organizations are using cloud technologies and DataOps to access real-time data insights and decision-making in 2023, according … A key responsibility of the CIO is to stay ahead of disruptions.

What Is Natural Language Processing (NLP)?

Natural language processing (NLP) is a sub-task of artificial intelligence that analyzes human language comprising text and speech through computational linguistics. It uses machine learning and deep learning models to understand the intent behind words in order to know the sentiment of the text. NLP is used in speech recognition, voice operated GPS phone and automotive systems, smart home digital assistants, video subtitles, sentiment analysis, image recognition, and more.

Hopefully, this post has helped you gain knowledge on which NLP algorithm will work best based on what you want trying to accomplish and who your target audience may be. Our Industry expert mentors will help you understand the logic behind everything Data Science related and help you gain the necessary knowledge you require to boost your career ahead. Abstractive text summarization has been widely studied for many years because of its superior performance compared to extractive summarization. However, extractive text summarization is much more straightforward than abstractive summarization because extractions do not require the generation of new text. The model performs better when provided with popular topics which have a high representation in the data , while it offers poorer results when prompted with highly niched or technical content. Still, it’s possibilities are only beginning to be explored.

natural language processing

Another possible task is recognizing and classifying the speech acts in a chunk of text (e.g. yes-no question, content question, statement, assertion, etc.). There are many applications for natural language processing, including business applications. This post discusses everything you need to know about NLP—whether you’re a developer, a business, or a complete beginner—and how to get started today.

Tracking the sequential generation of language representations over time and space

In this article, we took a look at some quick introductions to some of the most beginner-friendly Natural Language Processing or NLP algorithms and techniques. I hope this article helped you in some way to figure out where to start from if you want to study Natural Language Processing. You can also check out our article on Data Compression Algorithms.

Cyber Insights 2023 Artificial Intelligence – SecurityWeek

Cyber Insights 2023 Artificial Intelligence.

Posted: Tue, 31 Jan 2023 08:00:00 GMT [source]

Sanksshep Mahendra has a lot of experience in M&A and compliance, he holds a Master’s degree from Pratt Institute and executive education from Massachusetts Institute of Technology, in AI, Robotics, and Automation. Natural language generation, NLG for short, is used for analyzing unstructured data and using it as an input to automatically create content. Machine translation is used to translate one language in text or speech to another language. There are a ton of good online translation services including Google.

Automating processes in customer service

Using the vocabulary as a hash function allows us to invert the hash. This means that given the index of a feature , we can determine the corresponding token. One useful consequence is that once we have trained a model, we can see how certain tokens contribute to the model and its predictions. We can therefore interpret, explain, troubleshoot, or fine-tune our model by looking at how it uses tokens to make predictions.

What Is Natural Language Processing (NLP)?

Natural language processing (NLP) is a sub-task of artificial intelligence that analyzes human language comprising text and speech through computational linguistics. It uses machine learning and deep learning models to understand the intent behind words in order to know the sentiment of the text. NLP is used in speech recognition, voice operated GPS phone and automotive systems, smart home digital assistants, video subtitles, sentiment analysis, image recognition, and more.

It’s an excellent alternative if you don’t want to invest time and resources learning about machine learning or NLP. Natural Language Generation is a subfield of NLP designed to build computer systems or applications that can automatically produce all kinds of texts in natural language by using a semantic representation as input. Some of the applications of NLG are question answering and text summarization. Google Translate, Microsoft Translator, and Facebook Translation App are a few of the leading platforms for generic machine translation.

Supplementary Data 1

Our hash function mapped “this” to the 0-indexed column, “is” to the 1-indexed column and “the” to the 3-indexed columns. A vocabulary-based hash function has certain advantages and disadvantages. So far, this language may seem rather abstract if one isn’t used to mathematical language. However, when dealing with tabular data, data professionals have already been exposed to this type of data structure with spreadsheet programs and relational databases. The Python programing language provides a wide range of tools and libraries for attacking specific NLP tasks. Many of these are found in the Natural Language Toolkit, or NLTK, an open source collection of libraries, programs, and education resources for building NLP programs.

In fact, it’s vital – purely rules-based text analytics is a dead-end. But it’s not enough to use a single type of machine learning model. Certain aspects of machine learning are very subjective. You need to tune or train your system to match your perspective. All you really need to know if come across these terms is that they represent a set of data scientist guided machine learning algorithms. The top-down, language-first approach to natural language processing was replaced with a more statistical approach, because advancements in computing made this a more efficient way of developing NLP technology.

Python and the Natural Language Toolkit (NLTK)

NLP is commonly used fortext mining,machine translation, andautomated question answering. Obtaining knowledge in pathology reports through a natural language processing approach with classification, named-entity recognition, and relation-extraction heuristics. Rule-based algorithms have been selectively adopted for automated data extraction from highly structured text data3. However, this kind of approach is difficult to apply to complex data such as those in the pathology report and hardly used in hospitals. The advances in machine learning algorithms bring a new vision for more accurate and concise processing of complex data. ML algorithms can be applied to text, images, audio, and any other types of data.

natural language processing

There is also a possibility that out of 100 included cases in the study, there was only one true positive case, and 99 true negative cases, indicating that the author should have used a different dataset. Results should be clearly presented to the user, preferably in a table, as results only described in the text do not provide a proper overview of the evaluation outcomes . This also helps the reader interpret results, as opposed to having to scan a free text paragraph. Most publications did not perform an error analysis, while this will help to understand the limitations of the algorithm and implies topics for future research. This analysis can be accomplished in a number of ways, through machine learning models or by inputting rules for a computer to follow when analyzing text.

What is Natural Language Processing?

It is the most popular Python library for NLP, has a very active community behind it, and is often used for educational purposes. There is a handbook and tutorial for using NLTK, but it’s a pretty steep learning curve. However, building a whole infrastructure from scratch requires years of data science and programming experience or you may have to hire whole teams of engineers. Automatic summarization consists of reducing a text and creating a concise new version that contains its most relevant information. It can be particularly useful to summarize large pieces of unstructured data, such as academic papers. Besides providing customer support, chatbots can be used to recommend products, offer discounts, and make reservations, among many other tasks.

https://metadialog.com/

The present algorithm showed a significant performance gap with five competitive methods and adequate application results that contain proper keyword extraction from misrepresented reports. We expect that this work can be utilized by biomedical researchers or medical institutions to solve related problems. We employed a pre-trained BERT that consisted of 12 layers, 768 hidden sizes, 12 self-attention heads, and an output layer with four nodes for extracting keywords from pathology reports.

  • The LDA presumes that each text document consists of several subjects and that each subject consists of several words.
  • But scrutinizing highlights over many data instances is tedious and often infeasible.
  • However, recent studies suggest that random (i.e., untrained) networks can significantly map onto brain responses27,46,47.
  • Chatbots reduce customer waiting times by providing immediate responses and especially excel at handling routine queries , allowing agents to focus on solving more complex issues.
  • Take the sentence, “Sarah joined the group already with some search experience.” Who exactly has the search experience here?
  • Automate business processes and save hours of manual data processing.

In the third phase, both reviewers independently evaluated the resulting full-text articles for relevance. The reviewers used Rayyan in the first phase and Covidence in the second and third phases to store the information about the articles and their inclusion. In all phases, both reviewers independently reviewed all publications. After each phase the reviewers discussed any disagreement until consensus was reached. A systematic review of the literature was performed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement . They indicate a vague idea of what the sentence is about, but full understanding requires the successful combination of all three components.

keywords

This is the natural language processing algorithm by which a computer translates text from one language, such as English, to another language, such as French, without human intervention. On the assumption of words independence, this algorithm performs better than other simple ones. Stemming is useful for standardizing vocabulary processes.

Jeffs’ Brands Entered Into Non-Binding Letter of Intent with SuperBuzz for Developing ChatGPT and AI-Based Software for Amazon‘s Advertisement Platform – Yahoo Finance

Jeffs’ Brands Entered Into Non-Binding Letter of Intent with SuperBuzz for Developing ChatGPT and AI-Based Software for Amazon‘s Advertisement Platform.

Posted: Wed, 22 Feb 2023 12:45:00 GMT [source]